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Abstract

12 The equation of motion for two moving reaction boundaries in a solid is analysed. The distance between
13 the two boundaries corresponds to a film, and its thickness is given by an analytical expression in terms of
14 the Lambert W function. The time dependent growth of the film thickness is discussed, including its limits.
15 � 2002 Published by Elsevier Science Inc.
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17 1. Introduction

18 The relationship between the conversion of a solid reactant with a fluid and the reaction time is
19 of great importance in chemical reaction engineering. The unreacted core shrinking model and the
20 progressive conversion model are the most fundamental models and favoured because of their
21 analytical solutions [1,2].
22 We present a model for the evolution of a film thickness during reaction [6], which takes into
23 account not only a moving boundary for the unreacted core, but also a changing size of the object
24 itself, which is a second moving boundary. The motion of the former boundary is governed by a
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25 diffusion process and yields a squareroot-like behavior. The motion of the latter boundary is
26 governed by chemical reaction and causes a linear decrease of the sample thickness.
27 This model is more advanced than the two basic ones mentioned above, but it can be solved
28 analytically, provided that the Lambert W function (furtheron noted W ) is applied. The W
29 function [3,4] frequently applies to the study of biological growth problems in population dy-
30 namics [5] and, more recently, to film growth phenomena [6,7].
31 For flat objects, an exact and explicit solution for the film thickness is found. This model
32 originated from the need to predict the film thickness in activated carbon as a function of reaction
33 time, material properties, and process parameters.
34 Its justification is given by experimental observations made during the activation of glassy
35 carbon [8]. Its significance is given by the fact that electrodes made from such activated carbon are
36 utilized in electrochemical capacitors with the highest power density reported so far [9].
37 Thanks to the universal nature of the problem, the solution provided here is applicable to any
38 system which is governed by its underlying differential equation. Specific potential applications of
39 the model include the oxidation/reduction of metal catalysts, and the swelling of gels and coals.

40 2. Description of the model

41 A reaction Rb creates a film on a particle according to the unreacted core shrinking model and
42 is controlled by the diffusion from the surface of the planar slab to the reaction front and sus-
43 taining the progress of reaction [1,2]. Another process Ra burns off the film at the outer sample
44 boundary and is controlled by the chemical reaction.
45 Ra and Rb are two competing processes. Process Ra leads to a shrinking of the whole particle
46 itself and is retarding the film growth of reaction Rb. The film thickness D as a function of re-
47 action time therefore depends on both processes.
48 Note that in the standard treatment [1,2] of the shrinking unreacted core, the overall sample
49 diameter is considered constant, whereas our model also accounts for the shrinking (or swelling)
50 of the overall sample size. We refer to the particle as the unreacted core surrounded by the reacted
51 film.
52 We assume that the reaction front of Ra is confined to the particle surface and reaction Rb

53 confined to the unreacted core surface.
54 Consider a slab with thickness L in the halfspace xP 0 (Fig. 1).
55 Reaction Rb takes place at x ¼ L with the result that the slab experiences structural changes––a
56 film with a structure (like active carbon, open for diffusion of fluids) different from the original
57 slab structure (carbon with closed pores, not open for diffusion of fluids) is growing either into the
58 interior of the slab or growing on the surface of the slab. This reaction is confined to a plane front
59 parallel to the outer slab surface. An example for swelling samples would be the growth of an
60 oxide layer on a shrinking metal particle.
61 Reaction Rb depends on the reaction partners coming by diffusion from the slab surface to the
62 reaction front and maintaining the reaction. Let the position of the reaction front at time t0 is Q.
63 Another reaction Ra occurs with the result that the slab changes its original thickness P either
64 by growing or by shrinking. This reaction is confined to the outer surface of the slab. The position
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65 of the surface of the slab at time t0 is P. At the same time the film thickness is Dðt0Þ, and the
66 unreacted core thickness is Qðt0Þ.
67 The initial condition is Dðt ¼ 0Þ ¼ 0. The change of the sample thickness (i.e., the burn-off) is
68 assumed to be linear in t:

PðtÞ ¼ L� at; ð1Þ
70 a being a constant characterizing reactionRa. Depending on the sign of a, _PP ¼ �amay be positive
71 or negative. For aP 0, the slab is burnt off after t00 ¼ L=a. The function of QðtÞ is unknown.
72 We are interested in the thickness of the film with the open structure:

DðtÞ ¼ PðtÞ � QðtÞ: ð2Þ
74 The change of DðtÞ during reaction Rb is directly linked to the change of QðtÞ. The transport of
75 reaction partners through the film is limited by the thickness D with the result that _QQ is reciprocal
76 to D:

_QQðtÞ ¼ �b
PðtÞ � QðtÞ ¼

�b
DðtÞ ; ð3Þ

78 b being a diffusion constant for reaction Rb. The complete derivation of Eq. (3) is exercised
79 elsewhere [6].
80 The model is based on the well established steady-state approximation, that the shrinking of the
81 un-reacted core is much slower than the diffusion of the reactants. Using the time derivative of Eq.
82 (2), we obtain an ordinary differential equation for DðtÞ:

_DDðtÞ ¼ �aþ b
DðtÞ : ð4Þ

84 In the present section, we will apply variable transformations and a simple integration to obtain
85 an implicit equation for DðtÞ. Using the W function, the analytical integral of Eq. (4) is obtained.

Fig. 1. Sketch displaying thickness changes during reactions Ra and Rb.
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86 3. Solution and discussion of the differential equation

87 By bringing Eq. (4) into dimensionless form and splitting a constant off, we can integrate by
88 variable separation and obtain

W ðt�Þ expðW ðt�ÞÞ ¼ t�; ð5Þ
90 which is the implicit representation of the W function [3,4].
91 The film thickness DðtÞ is obtained by returning to the original variables:

DðtÞ ¼ b
a

1

�
þW

�
� exp

�
� 1� a2

b
t
���

: ð6Þ

93 This solution is similar to the generalized Lambert W function G [5].
94 Although Eq. (4) can be solved numerically, it is advantageous to formulate it in the W-form,
95 because the whole theory of the W-function becomes available. This facilitates the understanding
96 of the solution and the implementation of the film thickness in more complex relations.
97 In addition, there exists already a fast and reliable algorithm to compute the W-function
98 (Briggs, [7]).
99 Some typical results which reflect actual data obtained from glassy carbon activation [8], are

100 displayed in Fig. 2. It is obvious that DðtÞ increases with increasing diffusion constants, as ex-
101 pected from the model.

102 3.1. Limits of DðtÞ for long time and slow film growth

103 The property of W,

W ð� expð�1ÞÞ ¼ �1 ð7Þ
105 ensures that Dðt ¼ 0Þ ¼ 0. On the other hand, using W ð0Þ ¼ 0 we find the limit of DðtÞ for long
106 reaction times t,

Fig. 2. DðtÞ for three realistic sets of parameters a, b: b ¼ 0:1 lm2/s, circles; b ¼ 0:02 lm2/s, squares; b ¼ 0:005 lm2/s,

diamonds; a ¼ 0:001 lm/s.
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lim
t!1

DðtÞ ¼ b
a
; ð8Þ

108 provided that the slab has a sufficient thickness and is not yet burnt off.
109 The constant steady-state film thickness is approached asymptotically by an exponential of the
110 form expð�t1Þ, as can be derived from the argument in W .
111 As implied in the definition of t1, Eq. (5), the time constant characterizing the approach towards
112 steady-state thickness is given by s ¼ b=a2. This time decreases if the diffusion constant b is de-
113 creased, or if the burn-off rate a is increased, with the latter one being dominant because of its
114 second power (‘burn-off wins’).
115 With the film growth rate b taken zero, no film at all is obtained. This can be drawn from the
116 steady-state film thickness, Eq. (15), but also from the corresponding limit of W,

lim
b!0

DðtÞ ¼ lim
b!0

b
a

1

�
þ W

�
� exp

�
� 1� a2

b
t
���

¼ 0: ð9Þ

118 3.2. Limiting behavior for slow burn-off

119 With the burn-off rate a taken zero, the diffusion limited film thickness with non-changing
120 sample thickness must be obtained. To verify this point, we use the series expansion [5] of the
121 generalized Lambert W function G [5], which up to fourth order is given by

Gðt1Þ ¼
ffiffiffi
2

p ffiffi
t

p
1 �

2

3
t1 þ

ffiffiffi
2

p

18
t3=21 þ 2

135
t21: ð10Þ

123 The explicit result for the film thickness for small values of a is thus given by

DðtÞ ¼
ffiffiffiffiffiffiffi
2bt

p
� 2

3
at: ð11Þ

125 For a ¼ 0, only the lowest order term remains, and therefore

lim
a!0

DðtÞ ¼
ffiffiffiffiffiffiffi
2bt

p
; ð12Þ

127 as expected for diffusion controlled film growth on non-shrinking flat samples [1,2].
128 A plot of this lowest order approximation is shown as the upper, dashed curve in Fig. 3. It
129 corresponds to the classical diffusion controlled film growth for a non-shrinking sample. The solid
130 line represents the complete solution, Eq. (13).
131 Also, the first order approximation (Eq. (18)) does not reflect the correct film growth, as shown
132 in the lowest dashed curve in Fig. 3. Moreover, this approximation leads to a maximum of the film
133 thickness (at time t ¼ 9=8s), which is not justified by the model.
134 The comparison shows that the influence of non-zero burn-off is very significant for large times,
135 and is responsible for the approach towards a steady-state thickness. Omission of the burn-off
136 would lead to completely erroneous estimates of the film thickness for longer times.
137 Knowledge of Lambert’s W function has been essential for deriving an analytical solution that
138 correctly describes the time-dependent film thickness for both short and long time scales.
139 We finally note that the reaction controlled growth (concentration of reactants in the film does
140 not change) is governed by equation
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_QQðtÞ ¼ b�

a
_PPðtÞ; ð13Þ

142 b� being a constant describing the reaction rate, and DðtÞ being a linear function of the reaction
143 time:

DðtÞ ¼ ðb� � aÞt: ð14Þ
145 Such a growth is actually observed in electrochemically activated carbon [10].
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Fig. 3. DðtÞ for a ¼ 0:001 lm/s and b ¼ 0:05 lm2/s from Eq. (13) (solid line) and from the lowest (upper curve, Eq. (19))

and first (lower curve, Eq. (18)) order approximation.
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